LA HISTORIA DE LAS MATEMÁTICAS PARTE 2
La matemática griega, o matemática helénica, es la matemática escrita en griego desde el 600 a. C. hasta el 300 d. C.23 Los matemáticos griegos vivían en ciudades dispersas a lo largo del Mediterráneo Oriental, desde Italia hasta el Norte de África, pero estaban unidas por un lenguaje y una cultura comunes. Las matemáticas griegas del periodo siguiente a Alejandro Magno se llaman en ocasiones matemáticas helenísticas.
Las matemáticas griegas eran más sofisticadas que las matemáticas que habían desarrollado las culturas anteriores. Todos los registros que quedan de las matemáticas pre-helenísticas muestran el uso del razonamiento inductivo, esto es, repetidas observaciones usadas para establecer reglas generales. Los matemáticos griegos, por el contrario, usaban el razonamiento deductivo. Los griegos usaron la lógica para deducir conclusiones, o teoremas, a partir de definiciones y axiomas.24 La idea de las matemáticas como un entramado de teoremas sustentados en axiomas está explícita en los Elementos de Euclides (hacia el 300 a. C.).
Se cree que las matemáticas griegas comenzaron con Tales (hacia 624 a. C. - 546 a. C.) y Pitágoras (hacia 582 a. C. - 507 a. C.). Aunque el alcance de su influencia puede ser discutido, fueron inspiradas probablemente por las matemáticas egipcias, mesopotámicas e indias. Según la leyenda, Pitágoras viajó a Egipto para aprender matemáticas, geometría y astronomía de los sacerdotes egipcios.
Tales usó la geometría para resolver problemas tales como el cálculo de la altura de las pirámides y la distancia de los barcos desde la orilla. Se atribuye a Pitágoras la primera demostración del teorema que lleva su nombre, aunque el enunciado del teorema tiene una larga historia.23 En su comentario sobre Euclides, Proclo afirma que Pitágoras expresó el teorema que lleva su nombre y construyó ternas pitagóricas algebraicamente antes que de forma geométrica. La Academia de Platón tenía como lema "Que no pase nadie que no sepa Geometría".
Los Pitagóricos probaron la existencia de números irracionales. Eudoxio (408 al 355 a. C.) desarrolló el método exhaustivo, un precursor de la moderna integración. Aristóteles (384 al 322 a. C.) fue el primero en dar por escrito las leyes de la lógica. Euclides (hacia el 300 a. C.) dio el ejemplo más temprano de la metodología matemática usada hoy día, con definiciones, axiomas, teoremas y demostraciones. También estudió las cónicas. Su libro Elementos recoge toda la matemática de la época.25 En los Elementos se abordan todos los problemas fundamentales de la matemática, aunque siempre bajo un lenguaje geométrico. Además de problemas geométricos, también trata problemas aritméticos, algebraicos y de análisis matemático.25 Además de los teoremas familiares sobre geometría, tales como el Teorema de Pitágoras, los Elementos incluyen una demostración de que la raíz cuadrada de dos es un número irracional y otra sobre la infinitud de los números primos. La Criba de Eratóstenes (hacia 230 a. C.) fue usada para el descubrimiento de números primos.
Arquímedes de Siracusa (hacia 287-212 a. C.) usó el método exhaustivo para calcular el área bajo un arco de parábola con ayuda de la suma de una serie infinita y dio una aproximación notablemente exacta de pi.26 También estudió la espiral, dándole su nombre, fórmulas para el volumen de superficies de revolución y un ingenioso sistema para la expresión de números muy grandes.
Aunque muchos matemáticos griegos vivieron durante bastante tiempo en Egipto y Mesopotamia, y de sus culturas aprendieron casi todo en un principio, hicieron algo radicalmente original para las matemáticas: convertirlas en una ciencia racional; es decir, en una ciencia deductiva, rigurosa, erigida sobre axiomas y postulados evidentes.El emperador Qin Shi Huang ordenó en el 212 a. C. que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral. El libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).
La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a. C.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.
Después de la quema de libros, la dinastía Han (202 a. C.–220 d. C.) produjo obras matemáticas que presumiblemente abundaban en trabajos que se habían perdido. La más importante de estas es Los nueve capítulos sobre el arte matemático, cuyo título completo apareció hacia el 179 d. C., pero existía anteriormente en parte bajo otros títulos. La obra consiste en 246 problemas en palabras que involucran agricultura, negocios, usos geométricos para establecer las dimensiones de las pagodas, ingeniería, agrimensura y nociones sobre triángulos rectángulos y pi. También se usa el principio de Cavalieri sobre volúmenes más de mil años antes de que el propio Cavalieri lo formulara en Occidente. Se crearon pruebas sobre el Teorema de Pitágoras y una formulación matemática de la eliminación de Gauss-Jordan. Liu Hui hizo un comentario de la obra hacia el siglo III.
En resumen, las obras matemáticas del Han astrónomo e inventor Zhang Heng (78–139 d. C.) contenían una formulación para pi también, la cual difería de los cálculos de Liu Hui. Zhang Heng usó su fórmula de pi para encontrar volúmenes esféricos. Estaban también los trabajos escritos del matemático y teórico de la música Jing Fang (78–37 a. C.); mediante el uso de la coma pitagórica, Jing observó que 53 quintas justas se aproximan a 31 octavas. Esto llevaría más tarde al descubrimiento del temperamento igual que divide a la octava en 53 partes iguales y no volvería a ser calculado con tanta precisión hasta que en el siglo XVII lo hiciese el alemán Nicholas Mercator.
Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).
En el siglo V, Zu Chongzhi de las Dinastías del Sur y del Norte calculó el valor de pi hasta siete lugares decimales, lo que daba lugar al valor de pi más exacto durante casi 1000 años.La matemática india logró una importancia capital en la cultura occidental prerrenacentista con el legado de sus cifras, incluyendo el numeral 0, para denotar el cero o la ausencia de una unidad en la notación posicional.
Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú probablemente no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeración de base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.2829
No obstante fue durante el período clásico (siglos I al VIII) cuando los matemáticos indios llegaron a la madurez. Con anterioridad a este período, los hindúes tuvieron algún contacto con el mundo griego. La marcha de Alejandro Magno sobre la India tuvo lugar durante el siglo IV a. C. Por otra parte, la expansión del budismo en China y la del mundo árabe multiplicaron los puntos de contacto de la India con el exterior. Sin embargo, las matemáticas hindúes se desenvolvieron en un plano original, apoyándose más en el cálculo numérico que en el rigor deductivo.
Los avances en matemática india posteriores a los Sulba Sutras son los Siddhantas, tratados astronómicos del período Gupta (siglos IV y V a. C.) que muestran una fuerte influencia helénica.30 Son significativos en cuanto a que contienen la primera instancia de relaciones trigonométricas basadas en una semi-cuerda, como en trigonometría moderna, en lugar de una cuerda completa, como en la trigonometría ptolemaica.30 Con una serie de alteraciones y errores de traducción de por medio, las palabras «seno» y «coseno» derivan del sánscrito jiya y kojiya.30
El Suria-sidhanta (hacia el año 400) introdujo las funciones trigonométricas de seno, coseno y arcoseno y estableció reglas para determinar las trayectorias de los astros que son conformes con sus posiciones actuales en el cielo. Los ciclos cosmológicos explicados en el texto, que eran una copia de trabajos anteriores, correspondían a un año sideral medio de 365.2563627 días, lo que solo es 1,4 segundos mayor que el valor aceptado actualmente de 365.25636305 días. Este trabajo fue traducido del árabe al latín durante la Edad Media.3132
En el siglo V, Aryabhata escribe el Aryabhatiya, un delgado volumen concebido para complementar las reglas de cálculo utilizadas en astronomía y en medida matemática. Escrito en verso, carece de rigor lógico o metodología deductiva.33 Aunque casi la mitad de las entradas son incorrectas, es en el Aryabhatiya en donde el sistema decimal posicional aparece por vez primera. Siglos más tarde, el matemático árabe Abu Rayhan Biruni describiría este tratado como «una mezcla de guijarros ordinarios y cristales onerosos».33 En 499, Aryabhata introdujo la función verseno, produjo las primeras tablas trigonométricas del seno, desarrolló técnicas y algoritmos de álgebra, infinitesimales, ecuaciones diferenciales y obtuvo la solución completa de ecuaciones lineales por un método equivalente al actual, además de cálculos astronómicos basados en un sistema heliocéntrico de gravitación. Desde el siglo VIII estuvo disponible una traducción al árabe de su Ariabhatiya, seguida de una traducción al latín en el siglo XIII. También calculó el valor de π con once decimales (3,14159265359).
En el siglo VII, Brahmagupta identificó el teorema de Brahmagupta, la identidad de Brahmagupta y la fórmula de Brahmagupta y, por primera vez en Brahma-sphuta-siddhanta, explicó claramente los dos usos del número 0: como un símbolo para rellenar un hueco en el sistema posicional y como una cifra y explicó el sistema de numeración hindo-arábigo.34 Fue a raíz de una traducción de este texto indio sobre matemáticas (hacia el 770) cuando las matemáticas islámicas tuvieron acceso a este sistema de numeración, que posteriormente adaptaron usando los numerales arábigos. Los estudiantes árabes exportaron este conocimiento a Europa hacia el siglo XII y terminó desplazando los sistemas de numeración anteriores en todo el mundo. En el siglo X, un comentario de Jalaiuda sobre la obra de Pingala incluía un estudio de la sucesión de Fibonacci y del triángulo de Pascal y describía la formación de una matriz.[cita requerida]
En el siglo XII, Bhaskara II estudió diversas áreas de las matemáticas. Sus trabajos se aproximan a la moderna concepción de infinitesimal, derivación, coeficiente diferencial y diferenciación. También estableció el teorema de Rolle (un caso especial del teorema del valor medio), estudió la ecuación de Pell,[cita requerida] e investigó la derivada de la función seno. Hasta qué punto sus aportes anticiparon la invención del cálculo es fuente de controversias entre los historiadores de las matemáticas.35
Desde el siglo XII, Mádhava, fundador de la Escuela de Kerala, encontró la llamada serie de Madhava-Leibniz y, utilizando 21 términos, computó el valor del número π a 3,14159265359. Mádhava también encontró la serie de Madhava-Gregory para el arcotangente, la serie de potencias Madhava-Newton para determinar el seno y el coseno así como las aproximaciones de Taylor para las funciones seno y coseno.36 En el siglo XVI, Jyesthadeva consolidó muchos de los desarrollos y teoremas de la Escuela de Kerala en los Yukti-bhāṣā.37 Sin embargo, la Escuela no formuló una teoría sistemática de la derivada o la integración, ni existe evidencia directa de que sus resultados hayan sido transmitidos al exterior de Kerala.3839
Los progresos en matemáticas así como en otras ciencias se estancaron en la India a partir de la conquista musulmana de la India.4041


Comentarios
Publicar un comentario